19 research outputs found

    Flexible Receivers in CMOS for Wireless Communication

    Get PDF
    Consumers are pushing for higher data rates to support more services that are introduced in mobile applications. As an example, a few years ago video-on-demand was only accessed through landlines, but today wireless devices are frequently used to stream video. To support this, more flexible network solutions have merged in 4G, introducing new technical problems to the mobile terminal. New techniques are thus needed, and this dissertation explores five different ideas for receiver front-ends, that are cost-efficient and flexible both in performance and operating frequency. All ideas have been implemented in chips fabricated in 65 nm CMOS technology and verified by measurements. Paper I explores a voltage-mode receiver front-end where sub-threshold positive feedback transistors are introduced to increase the linearity in combination with a bootstrapped passive mixer. Paper II builds on the idea of 8-phase harmonic rejection, but simplifies it to a 6-phase solution that can reject noise and interferers at the 3rd order harmonic of the local oscillator frequency. This provides a good trade-off between the traditional quadrature mixer and the 8- phase harmonic rejection mixer. Furthermore, a very compact inductor-less low noise amplifier is introduced. Paper III investigates the use of global negative feedback in a receiver front-end, and also introduces an auxiliary path that can cancel noise from the main path. In paper IV, another global feedback based receiver front-end is designed, but with positive feedback instead of negative. By introducing global positive feedback, the resistance of the transistors in a passive mixer-first receiver front-end can be reduced to achieve a lower noise figure, while still maintaining input matching. Finally, paper V introduces a full receiver chain with a single-ended to differential LNA, current-mode downconversion mixers, and a baseband circuity that merges the functionalities of the transimpedance amplifier, channel-select filter, and analog-to-digital converter into one single power-efficient block

    Improving practical sensitivity of energy optimized wake-up receivers: proof of concept in 65nm CMOS

    Full text link
    We present a high performance low-power digital base-band architecture, specially designed for an energy optimized duty-cycled wake-up receiver scheme. Based on a careful wake-up beacon design, a structured wake-up beacon detection technique leads to an architecture that compensates for the implementation loss of a low-power wake-up receiver front-end at low energy and area costs. Design parameters are selected by energy optimization and the architecture is easily scalable to support various network sizes. Fabricated in 65nm CMOS, the digital base-band consumes 0.9uW (V_DD=0.37V) in sub-threshold operation at 250kbps, with appropriate 97% wake-up beacon detection and 0.04% false alarm probabilities. The circuit is fully functional at a minimum V_DD of 0.23V at f_max=5kHz and 0.018uW power consumption. Based on these results we show that our digital base-band can be used as a companion to compensate for front-end implementation losses resulting from the limited wake-up receiver power budget at a negligible cost. This implies an improvement of the practical sensitivity of the wake-up receiver, compared to what is traditionally reported.Comment: Submitted to IEEE Sensors Journa

    A Noise Cancelling 0.7-3.8 GHz Resistive Feedback Receiver Front-End in 65 nm CMOS

    No full text
    This paper presents a noise cancelling 0.7– 3.8GHz receiver front-end implemented in 65nm technology. The circuit has a main path consisting of a high input impedance gm-stage, current-mode passive mixers and baseband amplifiers, where the input match is provided by frequency translational negative feedback from baseband to RF input. An auxiliary path with tunable gain is introduced to cancel noise from the main path while maintaining linearity. The receiver front-end achieves a noise figure of 1.6–3.7dB and an IIP2 and IIP3 of >75dBm and >1dBm, respectively. The current consumption of the circuit is 22.8–34.9mA, from a 1.2V supply

    A linearized 1.6-5 GHz low noise amplifier using positive feedback in 65 nm CMOS

    No full text

    A Noise-Cancelling Receiver Front-End with Frequency Selective Input Matching

    No full text

    A 0.7 - 3.7 GHz Six Phase Receiver Front-End With Third Order Harmonic Rejection

    No full text
    This paper presents a highly linear receiver frontend operating from 700 MHz to 3.7 GHz with 3rd order harmonic rejection. It consists of a complementary low noise transconductance amplifier with capacitive cross coupling and negative gm current sources, a six phase current-mode passive mixer, and baseband transimpedance amplifiers providing programmable gain. The circuit has been fabricated in 65 nm CMOS technology with an active area of just 0.09 mm2. It consumes 7.2 mA, excluding the six phase local oscillator generation, from a 1.2 V supply, achieving a third order harmonic rejection of 40 dB, and a noise figure of 3 to 4.5 dB at 52 dB gain. The out of band IIP2 and IIP3 at full gain is +55 dBm and +5 dBm, respectively

    A 0.7 to 3 GHz wireless receiver front end in 65-nm CMOS with an LNA linearized by positive feedback

    No full text
    This paper presents a wireless receiver frontend intended for cellular applications implemented in a 65 nm CMOS technology. The circuit features a low noise amplifier (LNA), quadrature passive mixers, and a frequency divider generating 25 % duty cycle quadrature local oscillator (LO) signals. A complementary common-gate LNA is used, and to meet the stringent linearity requirements it employs positive feedback with transistors biased in the sub-threshold region, resulting in cancellation of the third order non-linearity. The mixers are also linearized, using a baseband to LO bootstrap circuit. Measurements of the front-end show about 3.5 dB improvement in out-ofband IIP3 at optimum bias of the positive feedback devices in the LNA, resulting in an out-of-band IIP3 of 10 dBm. With a frequency range from 0.7 to 3 GHz the receiver front-end covers most important cellular bands, with an input return loss above 9 dB and a voltage gain exceeding 16 dB for all bias settings. The circuit consumes 4.38 mA from a 1.5 V supply

    A 3.4mW 65nm CMOS 5th Order Programmable Active-RC Channel Select Filter for LTE Receivers

    No full text
    In this work a low power 5th order chebyshev active-RC low pass filter that meets Rel-8 LTE receiver requirements has been designed with programmable bandwidth and overshoot. Designed for a homodyne LTE receiver, filter bandwidths from 700kHz to 10MHz are supported. The bandwidth of the operational amplifiers is improved using a novel phase enhancement technique. The filter was implemented in 65nm CMOS technology with a core area of 0.29mm2. Its total current consumption is 2.83mA from a 1.2V supply. The measured input referred noise is 39nV/ √ Hz, the in-band IIP3 is 21.5dBm, at the band-edge the IIP3 is 20.7dBm, the out-of-band IIP3 is 20.6dBm, and the compression point is 0dBm

    A Positive Feedback Passive Mixer-First Receiver Front-End

    No full text
    This paper presents a technique to reduce the noise figure of a passive mixer-first receiver front-end. By using lower than 50Ω switch resistance in the current-mode passive mixer and introducing a positive feedback from baseband to the RF-input, it can be well matched close to fLO while achieving a noise figure below 3dB, which is otherwise a fundamental limit. A quadrature front-end prototype for a direct conversion receiver has been implemented in 65nm CMOS, occupying an active area of 0.23mm2 with a frequency operation ranging from 0.7 to 3.8GHz. The prototype achieves a minimum noise figure of 2.5dB, an out-of-band 1dB compression point of +3dBm, with IIP3 and IIP2 exceeding +26 and +65dBm, respectively. The current consumption from a 1.2V supply is between 22.8 and 62.8mA, depending on frequency operation
    corecore